Alterung einer Solaranlage Wie weiter?

Analyse und Studie zu Ersatz und möglicher Erweiterung einer bestehenden PV-Anlage auf dem Technischen Zentrum Obersiggenthal

Präsentation anlässlich der virtuellen GV des Vereins Solarlobby 26.05.2021

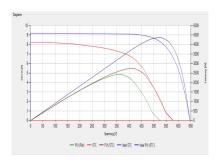
Überblick

- Ausgangslage
- Vorprojekt
- Aktuelle Zielsetzung
- Rahmenbedingungen
- Methoden und Analysen
- Resultate
- Fazit

solarlobby.ch

Chronologie & Fakten

- Flachdachbau im Zentrum von Obersiggenthal
- 2000: Bau der Anlage auf Technischem Zentrum
- 2017: Übernahme durch Solarlobby
- Bestand: 93 nach Süden ausgerichtete Module
- Leistung: 10 kWp in 3 Strings
- bis Ende 2025 durch die Mehrkostenfinanzierung (MKF) gefördert → 15 Rp/kWh
- Problem: weitgehende Modulbeschädigungen
- Potenzial: Dachfläche nicht vollständig belegt



Das Vorprojekt

- **Ziel:** Ermittlung des Zustands der bestehenden Anlage auf materialtechnischer und energetischer Ebene
- Vorgehen: Messung der elektrischen Parameter der jeweiligen Strings. Optische und thermografische Untersuchung der einzelnen Module

- → Der Zustand der einzelnen Module wurde in einer Bewertungsmatrix festgehalten und mit den elektrischen Parametern verglichen.
- → Degradationen und Leistungsabfälle konnten ermittelt und erklärt werden

Resultate des Vorprojekts

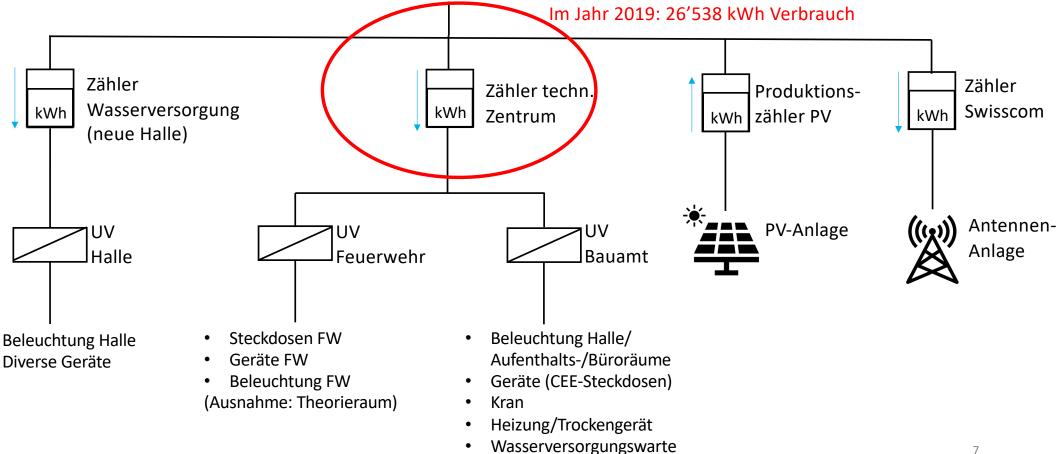
✓ Installierte Leistung: 10 kWp

✓ Moduldegradation: >37 %

✓ Auffälliges «Browning» und Hot-Spots vor allem in unteren Modulbereichen

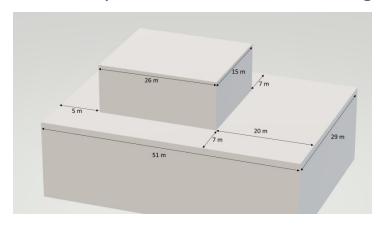
String	P nominal	P normierte Messung	Abweichung
1	4'368 W	2740 W	-37,27 %
2	4'368 W	2608 W	-40,29 %
3	1'310 W	237,59 W	-81,87 %

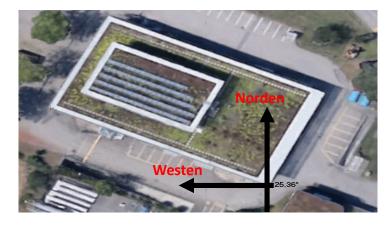
- ✓ Wenig Energie auf String 1 und 2 können aber problemlos in Betrieb gehalten werden
- ✓ bis Ende 2025 Mehrkostenfinanzierung (MKF) nutzbar (Vorgängermodell Einspeisevergütung KEV)
- ✓ hoher und gefährlicher **Leistungsabfall** für String 3 muss genauer untersucht werden
- ✓ Dach mit hohem Potential für Erweiterung/Erneuerung der Anlage


Zielsetzung Bachelorarbeit

- ✓ Ausarbeitung und Beurteilung des solarenergetischen Potentials der Dachfläche
- ✓ Analyse des Eigenverbrauchs des Gebäudes
- ✓ Ausarbeitung eines Konzepts zur Erhöhung der Nachhaltigkeit während dem Betrieb des Gebäudes bzw. angrenzender Gebäude
- → spezifische Topologie (mit diversen Stromzählern)
 - Feuerwehr
 - Wasserversorgungswarte
 - Baudienst
 - Swisscom-Antenne
 - PV-Anlage

Rahmenbedingungen: Elektro

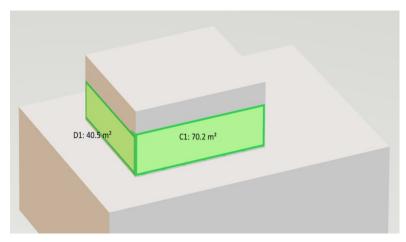


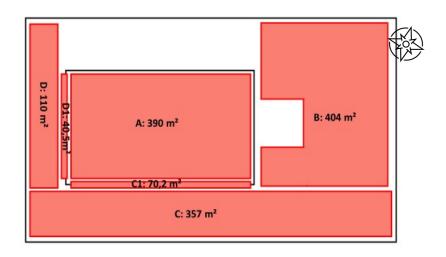


Rahmenbedingungen: Gebäudestruktur

- ✓ zwei Flachdach-Ebenen
- ✓ bestehende Antennenanlage und verschiedene Fortluftauslässe
- ✓ Gebäudelängsachse ca. 25° von der Ost-West-Achse abweichend
- ✓ keine perfekte Südausrichtung aber geeignete Südfassade.

- → 1'372 m² Fläche für Solarenergieerzeugung
- → Technisches Potenzial bei 80 % Belegung: 180 kWp falls 6 m2/kWp



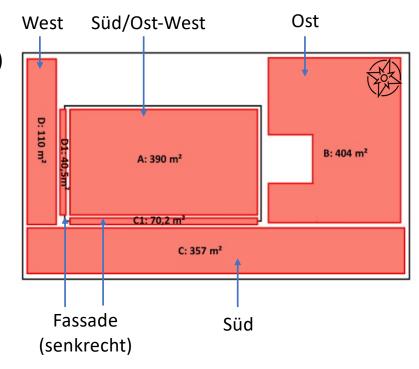

Rahmenbedingungen: Flächenpotenzial

• Untere Dachebene: 871 m2

Obere Dachfläche: 390 m2 (heutige Solaranlage)

• Fassaden Süd & West: 110 m2

- → für Winterstromerzeugung geeignete Südfassade
- → insgesamt ca. 1'372 m² möglich Rezeptorflächen



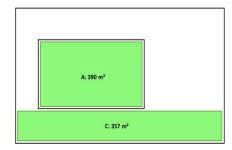
Methoden und Analysen: Verschattung

Ausrichtung der Modulreihen auf den Dachflächen

- Dachfläche A nicht von Schattenwurf betroffen
- → Ausrichtung nach Süden oder Ost-West (Polysun Analyse)
- Dachfläche B Abends von Schatten betroffen
- → Ausrichtung nach Osten
- Dachfläche C kaum von Schatten betroffen
- → Ausrichtung nach Süden
- Dachfläche D Morgens von Schatten betroffen
- → Ausrichtung nach Westen

Methoden und Analysen: Potentialanalyse

Um das Potential des Dachs stufenweise zu analysieren, wurden verschiedene Ausbaustufen entworfen, welche die Dach- und Fassadenflächen zunehmend ausfüllen.

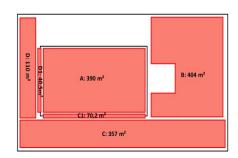

Ausbaustufe 1

Fläche A Analyse ob Süd- oder

Ost-West-Ausrichtung

Ausbaustufe 2

A gemäss 1, C nach Süden ausgerichtet


Fläche A und C

Ausbaustufe 3

Fläche A, C, Fassade
A gemäss 1, C nach
Süden, Fassaden
senkrecht (in jeweilige
Himmelsrichtung)

Ausbaustufe 4

Fläche A, B, C, D und Fassade

Nutzung aller verfügbaren Flächen

Methoden und Analysen: Potentialanalyse

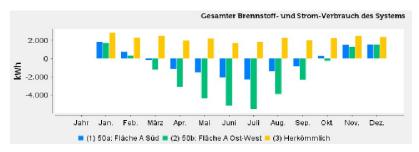
- Modulauswahl nach Preis-Leistungsverhältnis: JA Solar 340 Wp
- Anlagenkonfiguration auf Flächengrundrissen mit passenden Abständen und Modulmassen
- Ermittlung **Kostenrichtwert** über Händlerpreise, Margen und Förderbeiträge
- Untersuchung auf **Ertrag** und **Eigenverbrauch** des techn. Zentrums mit Polysun
- Untersuchung der **Wirtschaftlichkeit** auf Grundlage der aktuelle Situation in Solarbranche: aktuelle Solarenergieverkaufspreise und Förderbeiträge
- Berücksichtigung der Ziele der Energiestrategie 2050+ (26.11.20)
- Grundlage aktuelle Förderbeiträge, doppelte Solarenergieverkaufspreise (sehr optimistisch, verdeutlicht aber Handlungsbedarf im Solarsektor)

Energiestrategie 2050+:

«Schweiz [kann] ihre Energieversorgung bis 2050 klimaneutral umbauen und gleichzeitig die Energieversorgungssicherheit gewährleisten»

«Der Zubau erneuerbarer Stromproduktion mit hohen Anteilen an Photovoltaik muss rasch und in einem Ausmass erfolgen, welches deutlich über das heutige Niveau hinausgeht»

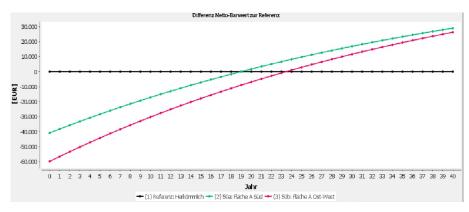
BFE 2020


Methoden und Analysen: Ausbaustufe 1

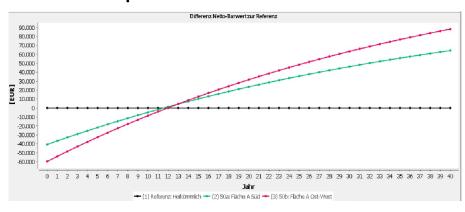
Vergleich der Ausrichtungsvarianten:

	Süd	Ost-West
Module [Stck.]	90	160
Nennleistung DC [kW]	30,6	54,4
Ertrag AC [kWh/Jahr]	30′101	47'577
Eigenverbrauch [kWh/Jahr]	8'790	10'072
Netzbezug [kWh/Jahr]	17'748	16'466
Netzeinspeisung [kWh/Jahr]	21′311	37′505

Methoden und Analysen: Ausbaustufe 1


Wirtschaftlichkeitsberechnung:

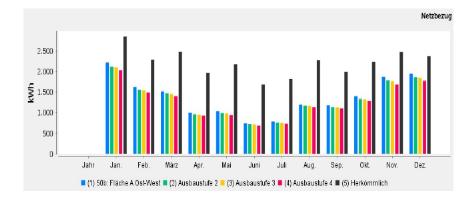
	Süd	Ost-West
Gesamtbetrag [CHF]	52′164	78'283
Förderbeitrag [CHF]	11′379	18'519
Endbetrag [CHF]	40′784	59'763
Amortisationszeit aktuell [Jahre]	19	24
Amortisationszeit potentiell [Jahre]	12	12

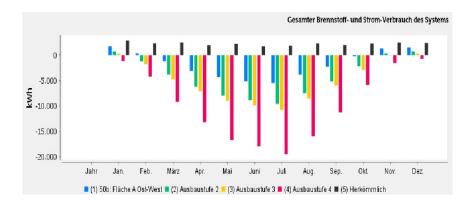

Fazit:

Da in naher Zukunft mit positiven Änderungen in der Solarbranche zu rechnen ist, wird sich die Ost-West-Variante mit hoher Wahrscheinlichkeit besser eignen.

Kostenverlauf aktuell:

Kostenverlauf potentiell:

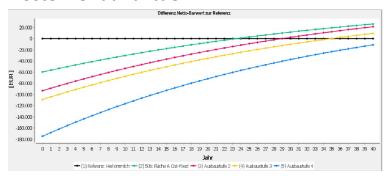




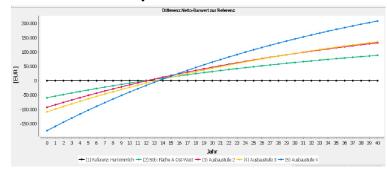
Methoden und Analysen: Ausbaustufe 1-4

Vergleich der Ausbaustufen:

	Stufe 1	Stufe 2		Stufe 4
Module [Stk.]	160	250	298	484
Nennleistung DC [kW]	54,4	85	100,6	164,6
Ertrag AC [kWh/Jahr]	47'577	77'678	87'168	144'019
Eigenverbrauch [kWh/Jahr]	10'072	10'735	10'863	11'408
Netzbezug [kWh/Jahr]	16'466	15'803	15'675	15′130
Netzeinspeisung [kWh/Jahr]	37'505	66'943	76'304	132'611



Methoden und Analysen: Ausbaustufe 1-4


Wirtschaftlichkeitsberechnung:

	Stufe 1	Stufe 2		Stufe 4
Gesamtbetrag [CHF]	78′283	120'911	141′318	227′032
Förderbeitrag [CHF]	18'519	27′700	32'392	51′568
Endbetrag [CHF]	59'763	93'211	108'926	175'464
Amortisationszeit aktuell [Jahre]	24	29	35	46
Amortisationszeit potentiell [Jahre]	12	13	14	14

Kostenverlauf aktuell:

Kostenverlauf potentiell:

Methoden und Analysen: Ausbaustufe 1-4

Schlussfolgerung:

- Nur um das technische Zentrum zu versorgen reicht Ausbaustufe 1 aus
- Weitere Ausbaustufen können Eigenverbrauch nicht wesentlich erhöhen
- Betriebsoptimierung spielt wichtigere Rolle als Ausbaugrad
- Grosse Ausbaustufen können viel Energie bereitstellen, die für andere Zwecke genutzt werden kann

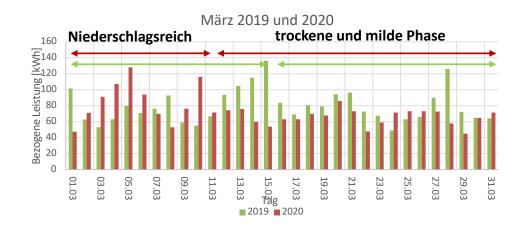
→ Dach- und Fassadenflächen des Gebäudes bieten hohes solarenergetisches Potential

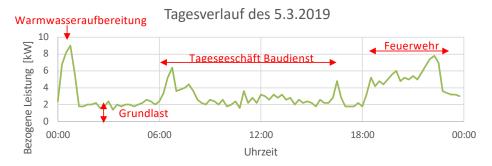
Methoden und Analysen: Verbrauch

Verbrauchsprofile wurden analysiert um Optimierungspotential aufzudecken.

Vorgehen:

- Monatsanalyse 2019 und 2020 um Änderungen im Leistungsbezug zu erkennen (Abgleich mit Wetterlage und Feuerwehreinsatzplänen)
- Keine systematischen Abweichungen feststellbar
- Fokus auf 2019 (vollständiger Datensatz vorliegend) und in Polysun-Simulation als spezifischer Lastgang hinterlegt wurde
- Wochenverläufe miteinander verglichen um typische Muster zu erkennen
- Tag mit täglichen Verbrauchsschnitts des Monats genauer analysiert

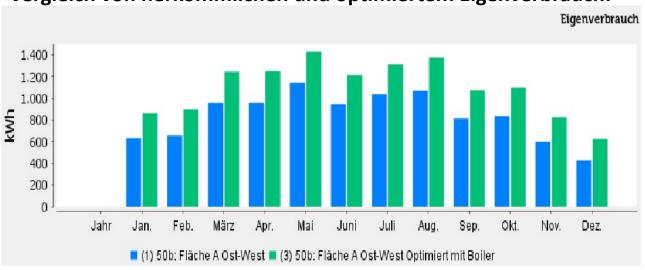




Methoden und Analysen: Verbrauch

Feststellungen:

- Einsätze von Baudienst sowie Feuerwehr sind stark wetterabhängig
- Volatile Verbrauchswerte
- → Bei **schönem Wetter** wird **wenig Energie** benötigt. Gegenläufig zu Energieproduktion
- Tages- und Wochenmuster oft sehr ähnlich
- →Optimierungspotential stellt hauptsächlich Warmwasseraufbereitung dar
- Grundlast kaum je unter 2 kW



Methoden und Analysen: Verbrauchsoptimierung

Optimierungspotenzial Warmwasseraufbereitung:

- Verlegen der Warmwasseraufbereitung in die Hauptproduktionszeit der Anlage (Ausbaustufe 1)
- Warmwasser wird jede Nacht von Di bis Sa aufbereitet: Bezug 6 kW über 1,25 Stunden → 7,5 kWh

Vergleich von herkömmlichen und optimiertem Eigenverbrauch:

- → Der Eigenverbrauch könnte jährlich etwa um 1'950 kWh erhöht werden und würde dann 12'022 kWh betragen. Dies entspricht einer Steigerung um 7,4% auf insgesamt 45,3% des Gesamtverbrauchs.
- → Reduktion der Amortisationszeit um 2 Jahre

Methoden und Analysen: Konzepte für die Zukunft

Wie aus den Analysen hervorgeht, bietet das Dach grosses Potential für die Erzeugung von Solarenergie: Mit Ausbaustufe 4 könnten etwa 144'000 kWh/Jahr erzeugt werden.

- Vorgehen: Entwicklung verschiedener Konzepte für Nutzung der erzeugten Energie in der nahen Umgebung um die Nachhaltigkeit zu steigern
- Methode: Auf Grundlage von Ausbaustufe 4 wurden verschiedene Zusammenschlüsse zum Eigenverbrauch in verschiedenen Grössen analysiert
- Resultat: ZEV von allen Parteien mit Anlagengrösse von Stufe 4 könnten mehr als 50% des gesamten Eigenverbrauchs decken (ca. 75'000 kWh nachhaltig = ca. 77 t CO2/Jahr)

Methoden und Analysen: Konzepte für die Zukunft

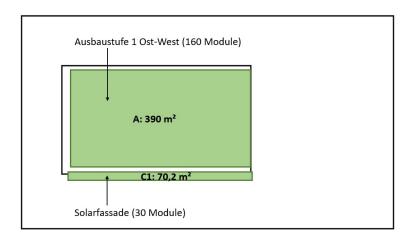
Problem: Verschiedene Parteien aus unterschiedlichsten (wirtschaftlichen) Sektoren haben verschiedene Interessen

→ Realistisch wäre ein kleinerer Zusammenschluss zum Eigenverbrauch (ZEV)

ZEV-Modell:

- Parteien: Gemeinde + Privathaushalt
- Technisches Zentrum, Wasserversorgungshalle, Wohngebäude
- Umrüstung 4 E-Kleinfahrzeuge technischer Dienst
- Erweiterung kommunale E-Mobil-Ladestationen

Mögliche Verbraucher	Verbrauch	Einheit
Wohnhaus	3'500	kWh
Wasserversorgung	15'000	kWh
Techn. Zentrum	26'538	kWh
Elektroflotte/-tankstelle	9'213	kWh
Gesamt	54'251	kWh

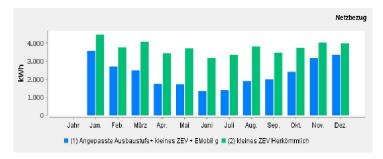

Konzept für die Zukunft: Beschränkung auf Hauptdach und Südfassade

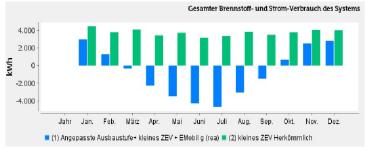
Anpassung des Ausbaugrads:

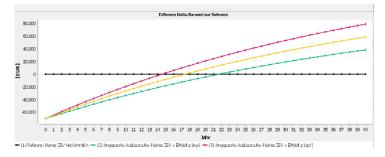
- Anlage aus 190 Module (64.6 kWp)
- 30 Module davon an der Fassade (10.2 kWp)
- Produktion: 54'498 kWh/Jahr

Kostenübersicht (Annahme: CHF 1'417/kWp)

Posten	Preis	Einheit
Gesamt	91'548	CHF
Förderbeitrag	21'579	CHF
Endbetrag	69'969	CHF

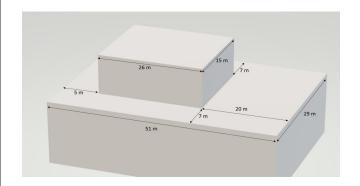





Methoden und Analysen: Konzepte für die Zukunft

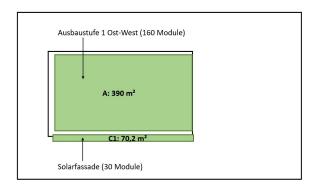
Resultat:

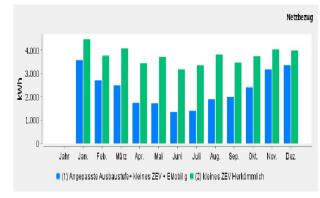
- 30'015 kWh/Jahr können für den Eigenverbrauch genutzt werden = 55% des Gesamtverbrauchs
- → Netzbezug wird auf 27'831 kWh reduziert = 29,2 t CO2/Jahr
- →9'460 kWh werden ins Netz abgegeben
- → Amortisationszeiten je nach Betrachtung zwischen 15 und 22 Jahren (reine Anlagenkosten)



Fazit: Technisches Zentrum

- Geringer Ausbaugrad ausreichend
- Betriebsoptimierung kann Effizienz enorm steigern
- Weitere Messungen an Verbrauchen um Betrieb weiter zu optimieren
- Dach bietet grosses Potential für Produktion von Solarenergie





Erkenntnisse

- → Grösstmögliche Anlage auf dem technischen Zentrum könnte grossen ZEV versorgen
- → Volles energetisches Ausbaupotenzial kontrastiert zur vorhandenen Bereitschaft für Zusammenarbeit
- → Kleiner ZEV realistisch und mit kleinerer Anlage möglich und dennoch effektiv
- → Pilotprojekte bewirken Imagegewinn für Gemeinden/Betriebe

Fazit: Allgemein

- ✓ Anlage auf dem Technischen Zentrum soll weiter betrieben werden (MKF bis Ende 2025)
- ✓ schnellstmöglich gemeinsame Beratung von **Nachfolgeprojekten**, damit Potential nicht ungenutzt bleibt und bestmöglich ausgeschöpft werden kann
- ✓ **Genereller Zielkonflikt** in Solarbranche zwischen Erreichen der Ziele 2050, geringer Zubauraten und aktueller Förderprogramme (Faktor 5 zu niedrig)
- ✓ Betriebe und Gemeinden demonstrieren mit Pionierprojekten ihr Image bezüglich Nachhaltigkeit und Fortschrittlichkeit
- ✓ Überschussenergie aus Solarsektor mit anderen Technologien wie Power-to-X könnten Effizienz/Nachhaltigkeit zusätzlich erhöhen
- ✓ **ZEV** prüfen

Fragen und Diskussion?

Massimo Völkle massimo.voelkle@students.fhnw.ch

